如图,梯形ABCD中,AD∥BC,AB⊥BC,对角线AC⊥BD于P,已知AD:BC=3:4,则BD:AC的值是________.
网友回答
:2
解析分析:设AD=3x,BC=4x,利用垂直的定义得到∠BAD=∠ABC=90°,∠APD=90°,再根据等角的余角相等得到∠BAC=∠ADB,然后根据相似三角形的判定方法得Rt△ABD∽Rt△CBA,再利用相似比先表示出AB,最后计算出BD:AC的值.
解答:设AD=3x,BC=4x,
∵AD∥BC,AB⊥BC,
∴∠BAD=∠ABC=90°,
∴∠BAC+∠CAD=90°,
∵AC⊥BD,
∴∠APD=90°,
∴∠ADP+∠DAP=90°,
∴∠BAC=∠ADB,
∴Rt△ABD∽Rt△CBA,
∴==,即==,解得AB=2x,
∴==.
故