如图,在△ABC中,AD平分∠BAC交BC于点D.点E、F分别在边AB、AC上,且BE=AF,FG∥AB交线段AD于点G,连接BG、EF.
(1)求证:四边形BGFE是平行四边形;
(2)若△ABG∽△AGF,AB=10,AG=6,求线段BE的长.
网友回答
(1)证明:∵FG∥AB,
∴∠BAD=∠AGF.
∵∠BAD=∠GAF,
∴∠AGF=∠GAF,AF=GF.
∵BE=AF,∴FG=BE,
又∵FG∥BE,
∴四边形BGFE为平行四边形.
(2)解:△ABG∽△AGF,
∴,
即,
∴AF=3.6,
∵BE=AF,
∴BE=3.6.?
解析分析:(1)根据FG∥AB,又AD平分∠BAC,可证得,∠AGF=∠GAF,从而得:AF=FG=BE,又因为FG∥AB,所以可知四边形BGFE是平行四边形;
(2)根据△ABG∽△AGF,可得,求出AF的长,再由(1)的结论:AF=FG=BE,即可得BE的长.
点评:解决此类题目,要掌握平行四边形的判定及相似三角形的性质.