已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.(1)若⊙O的半径为8,求CD的长;(2)证明:P

发布时间:2020-08-07 15:57:58

已知直线PD垂直平分⊙O的半径OA于点B,PD交⊙O于点C、D,PE是⊙O的切线,E为切点,连结AE,交CD于点F.
(1)若⊙O的半径为8,求CD的长;
(2)证明:PE=PF;
(3)若PF=13,sinA=,求EF的长.

网友回答

解:(1)连接OD,
∵直线PD垂直平分⊙O的半径OA于点B,⊙O的半径为8,
∴OB=OA=4,BC=BD=CD,
∴在Rt△OBD中,BD==4,
∴CD=2BD=8;

(2)∵PE是⊙O的切线,
∴∠PEO=90°,
∴∠PEF=90°-∠AEO,∠PFE=∠AFB=90°-∠A,
∵OE=OA,
∴∠A=∠AEO,
∴∠PEF=∠PFE,
∴PE=PF;

(2)过点P作PG⊥EF于点G,
∴∠PGF=∠ABF=90°,
∵∠PFG=∠AFB,
∴∠FPG=∠A,
∴FG=PF?sinA=13×=5,
∵PE=PF,
∴EF=2FG=10.
解析分析:(1)首先连接OD,由直线PD垂直平分⊙O的半径OA于点B,⊙O的半径为8,可求得OB的长,又由勾股定理,可求得BD的长,然后由垂径定理,求得CD的长;
(2)由PE是⊙O的切线,易证得∠PEF=90°-∠AEO,∠PFE=∠AFB=90°-∠A,继而可证得∠PEF=∠PFE,根据等角对等边的性质,可得PE=PF;
(3)首先过点P作PG⊥EF于点G,易得∠FPG=∠A,即可得FG=PF?sinA=13×=5,又由等腰三角形的性质,求得
以上问题属网友观点,不代表本站立场,仅供参考!