解答题已知数列a1,a2,…a30,其中a1,a2,…a10,是首项为1,公差为1的等

发布时间:2020-07-09 01:34:23

解答题已知数列a1,a2,…a30,其中a1,a2,…a10,是首项为1,公差为1的等差数列;列a10,a11,…a20,是公差为d的等差数列;a20,a21,…a30,是公差为d2的等差数列(d≠0).
(1)若a20=40,求d;
(2)试写出a30关于d的关系式,并求a30的取值范围;
(3)续写已知数列,使得a30,a31,…a40,是公差为d3的等差数列,…,依此类推,把已知数列推广为无穷数列.提出同(2)类似的问题((2)应当作为特例),并进行研究,你能得到什么样的结论?

网友回答

解:(1)a10=1+9=10.a20=10+10d=40,∴d=3.
(2)a30=a20+10d2=10(1+d+d2)(d≠0),
a30=10,
当d∈(-∞,0)∪(0,+∞)时,a30∈[7.5,+∞)
(3)所给数列可推广为无穷数列{an],
其中a1,a2,…,a10是首项为1,公差为1的等差数列,
当n≥1时,数列a10n,a10n+1,…,a10(n+1)是公差为dn的等差数列.
研究的问题可以是:试写出a10(n+1)关于d的关系式,并求a10(n+1)的取值范围.
研究的结论可以是:由a40=a30+10d3=10(1+d+d2+d3),
依此类推可得a10(n+1)=10(1+d+…+dn)=.
当d>0时,a10(n+1)的取值范围为(10,+∞)等.解析分析:(1)根据原等差数列的首项和公差求出a10,根据a20的值,由a10,a11,…a20,是公差为d的等差数列,利用等差数列的性质列出关于d的方程,求出方程的解即可得到d的值;(2)由a20,a21,…a30,是公差为d2的等差数列,利用等差数列的性质表示出a30是关于d的二次函数,根据d不等于0,利用二次函数即可求出a30的取值范围;(3)根据题意归纳出:当n≥1时,数列a10n,a10n+1,…,a10(n+1)是公差为dn的等差数列,可以续写已知数列,并利用类似(2)中的方法归纳出a10(n+1)的取值范围.点评:此题考查学生灵活运用等差数列的性质解决实际问题,会根据特例总结归纳出一般性的规律,是一道中档题.
以上问题属网友观点,不代表本站立场,仅供参考!