已知抛物线y=x2-mx+m-2.(1)求证:此抛物线与x轴有两个不同的交点;(2)若m是整数,抛物线y=x2-mx+m-2与x轴交于整数点,求m的值;(3)在(2)

发布时间:2020-08-09 23:40:57

已知抛物线y=x2-mx+m-2.
(1)求证:此抛物线与x轴有两个不同的交点;
(2)若m是整数,抛物线y=x2-mx+m-2与x轴交于整数点,求m的值;
(3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B.若m为坐标轴上一点,且MA=MB,求点M的坐标.

网友回答

(1)证明:令y=0,则x2-mx+m-2=0.
因为△=m2-4m+8=(m-2)2+4>0,
所以此抛物线与x轴有两个不同的交点.

(2)解:因为关于x的方程x2-mx+m-2=0的根为x==,
由m为整数,当(m-2)2+4为完全平方数时,此抛物线与x轴才有可能交于整数点.
设(m-2)2+4=n2(其中n为整数),
则[n+(m-2)][n-(m-2)]=4
因为n+(m-2)与n-(m-2)的奇偶性相同,
所以

解得m=2.
经过检验,当m=2时,方程x2-mx+m-2=0有整数根.
所以m=2.

(3)解:当m=2时,
此二次函数解析式为y=x2-2x=(x-1)2-1,
则顶点坐标为(1,-1).
抛物线与x轴的交点为O(0,0)、B(2,0).
设抛物线的对称轴与x轴交于点M1,则M1(1,0).
在直角三角形AM1O中,由勾股定理,得.
由抛物线的对称性可得,.
又因为,即OA2+AB2=OB2.
所以△ABO为等腰直角三角形.
则M1A=M1B.
所以M1(1,0)为所求的点.
若满足条件的点M2在y轴上时,
设M2坐标为(0,y),
过A作AN⊥y轴于N,连接AM2、BM2,则M2A=M2B.
由勾股定理,
即M2A2=M2N2+AN2;M2B2=M2O2+OB2,
即(y+1)2+12=y2+22.
解得y=1.
所以M2(0,1)为所求的点.
综上所述,满足条件的M点的坐标为(1,0)或(0,1).
解析分析:(1)与x轴有两个交点即是△>0,只要表示出△,通过配方得到(m-2)2+4即可说明此抛物线与x轴有两个不同的交点;
(2)因为关于x的方程x2-mx+m-2=0的根为,
由m为整数,当(m-2)2+4为完全平方数时,此抛物线与x轴才有可能交于整数点.列方程即可求得;
(3)首先确定函数的解析式,根据题意求得A,B的坐标,根据题意列方程即可.

点评:此题考查了学生的综合应用能力,解题的关键是仔细审题,理解题意;特别是要注意数形结合思想的应用.此题属于难度大的问题,要注意审题.
以上问题属网友观点,不代表本站立场,仅供参考!