已知,⊙O的半径为1,点P与O的距离为d,且方程x2-2x+d=0有实数根,则点P在⊙O的________(填“圆内”或“圆上”或“圆外”).
网友回答
圆内或圆上
解析分析:利用由已知条件方程x2-2x+d=0有实数根,可得出一元二次方程根的判别式,△=b2-4ac≥0,求出d的取值范围,结合圆的半径是
1,得出d与r大小关系,当d=r,点P在⊙O上;当d<r,点P在⊙O的内部,根据点与圆的位置关系得出p与圆的位置关系.
解答:∵方程x2-2x+d=0有实数根,
∴△=b2-4ac=4-4d≥0,
∴d≤1,
∴d≤r;
当d<r,
∴点P在⊙O的内部,
当d=r,
∴点P在⊙O上;
∴点P在⊙O的内部或点P在⊙O上.
故