如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:(1)△AED≌

发布时间:2020-08-09 15:28:13

如图,在Rt△ABC中,AB=AC,D、E是斜边BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:(1)△AED≌△AEF;(2)△ABE∽△ACD;(3)BE+DC=DE;(4)BE2+DC2=DE2.其中正确的是A.(2)(4)B.(1)(4)C.(2)(3)D.(1)(3)

网友回答

B
解析分析:由△ADC绕点A顺时针旋转90°得△AFB,可知△ADC≌△AFB,∠FAD=90°,由∠DAE=45°可判断∠FAE=∠DAE,可证①△AED≌△AEF.由已知条件可证△BEF为直角三角形,则有④BE2+DC2=DE2是正确的.

解答:∵△ADC绕点A顺时针旋转90°得△AFB,
∴△ADC≌△AFB,∠FAD=90°,
∴AD=AF,
∵∠DAE=45°,
∴∠FAE=90°-∠DAE=45°,
∴∠DAE=∠FAE,
∵在△AED与△AEF中,

∴△AED≌△AEF(SAS),故①正确;
∵∠BAE与∠CAD的大小无法确定,
∴△ABE与△ACD是否相似无法确定,故②错误;
同理,DE与BE+DC的大小也无法确定,故③错误;
∵△AED≌△AEF,
∴ED=FE,∠ACB=∠ABF,
在Rt△ABC中,
∵∠ABC+∠ACB=90°,
∴∠ABC+∠ABF=90°即∠FBE=90°,
∴BE2+BF2=FE2,即BE2+DC2=DE2,故④正确.
故选B.

点评:本题考查的是相似三角形的判定与性质,涉及到全都三角形的判定与性质、图形旋转的性质等知识,难度适中.
以上问题属网友观点,不代表本站立场,仅供参考!