如图,A、B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB).经测量,森林保护区中心P点在A城市的北偏东30°方向,B城市的北偏西45°

发布时间:2020-08-06 23:33:39

如图,A、B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB).经测量,森林保护区中心P点在A城市的北偏东30°方向,B城市的北偏西45°方向上.已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?

网友回答

解:过点P作PD⊥AB,垂足为D,由题可得∠APD=30°∠BPD=45°,
设AD=x,在Rt△APD中,PD=x,
在Rt△PBD中,BD=PD=x,
∴x+x=100,x=50(-1),
∴PD=x=50(3-)≈63.4>50,
∴不会穿过保护区.
答:森林保护区的中心与直线AB的距离大于保护区的半径,所以计划修筑的这条高速公路不会穿越保护区.
解析分析:过点P作PD⊥AB,D是垂足.AD与BD都可以根据三角函数用PD表示出来.根据AB的长,得到一个关于PD的方程,解出PD的长.从而判断出这条高速公路会不会穿越保护区.

点评:本题主要考查解直角三角形的应用,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
以上问题属网友观点,不代表本站立场,仅供参考!