如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式;(2)设此抛物线与直线y=x相交于点A,B(点B在点A的右侧),平行于y

发布时间:2020-08-06 23:33:11

如图,已知抛物线y=x2+bx+c经过点(1,-5)和(-2,4)
(1)求这条抛物线的解析式;
(2)设此抛物线与直线y=x相交于点A,B(点B在点A的右侧),平行于y轴的直线x=m(0<m<+1)与抛物线交于点M,与直线y=x交于点N,交x轴于点P,求线段MN的长(用含m的代数式表示);
(3)在条件(2)的情况下,连接OM、BM,是否存在m的值,使△BOM的面积S最大?若存在,请求出m的值;若不存在,请说明理由.

网友回答

解:(1)由题意把点(1,-5)、(-2,4)代入y=x2+bx+c得:

解得b=-2,c=-4,
∴此抛物线解析式为:y=x2-2x-4;

(2)由题意得:,
∴x2-3x-4=0,
解得:x=4或x=-1(舍),
∴点B的坐标为(4,4),
将x=m代入y=x条件得y=m,
∴点N的坐标为(m,m),
同理点M的坐标为(m,m2-2m-4),点P的坐标为(m,0),
∴PN=|m|,MP=|m2-2m-4|,
∵0<m<+1,
∴MN=PN+MP=-m2+3m+4;

(3)作BC⊥MN于点C,
则BC=4-m,OP=m,
S=MN?OP+MN?BC,
=2(-m2+3m+4),
=-2(m-)2+12,
∵-2<0,
∴当m-=0,则m=时,S有最大值.
解析分析:(1)利用待定系数法,将A,B的坐标代入解析式即可求得二次函数的解析式;
(2)因为点B是y=x与y=x2-2x-4的交点,根据题意可求得N,M的坐标,则可表示出MN的长,通过纵坐标的绝对值的和求得;
(3)把△BOM分成两个△OMN与△BMN,把MN作为两个三角形的底,通过点B,P的纵坐标表示出两个三角形的高即可求得三角形的面积.

点评:此题考查了待定系数法求解析式,还考查了三角形的面积,要注意将三角形分解成两个三角形求解;
还要注意求最大值可以借助于二次函数.
以上问题属网友观点,不代表本站立场,仅供参考!