已知Rt△ABC,∠ACB=90°,AC=BC,点D是斜边的中点,经过点C引一条直线l(不与AC、BC重合并且不经过点D)
操作:经过点A作AE⊥l,经过点B作BF⊥l,连接DE、DF,猜想△DEF的形状并证明.
网友回答
解:△DEF为等腰直角三角形;
证明:如图,连接CD,∵AE⊥CE,BF⊥CE,
∴∠AEC=∠BFC=90°,
∵∠ACE+∠BCF=90°,∠BCF+∠CBF=90°,
∴∠ACE=∠CBF,
在△ACE与△CBF中,
,
∴△ACE≌△CBF(AAS),
∴AE=CF,∠CAE=∠BCF,
∵∠CAB=∠DCB=45°,
∴∠FCD=∠DAE,
又AD=CD,
∴△AED≌△CFD,
∴ED=FD,∠ADE=∠CDF,
∴∠EDF=∠ADE+∠ADF=∠CDF+∠ADF=90°,
∴△DEF为等腰直角三角形.
解析分析:可先证明Rt△ACE与Rt△CBF全等,再通过边角关系证明△AED≌△CFD,进而可得AE与DE相等,即为等腰三角形.
点评:本题考查了等腰三角形的判定及全等三角形的判定与性质;熟练掌握三角形全等的判定,能够运用三角形的全等得出线段相等,对应角相等,作出辅助线是解答本题的关键.