如图,△ABC中,AB=4,AC=3,点D、E、F分别在边AB、BC、AC上,且四边形ADEF是菱形,连接BF交DE于点G,则EG的长为________.

发布时间:2020-08-07 18:26:47

如图,△ABC中,AB=4,AC=3,点D、E、F分别在边AB、BC、AC上,且四边形ADEF是菱形,连接BF交DE于点G,则EG的长为________.

网友回答


解析分析:根据菱形的性质及相似三角形的判定方法可得到,与△BDE相似的三角形有△BAC;设菱形ADEF的边长为x,已证△BDE∽△BAC,根据相似三角形的对应边成比例即可求得菱形的边长;根据相似三角形的判定证明△BGE∽△BFC,再根据三角形的对应边对应成比例即可求得EG的长.

解答:∵四边形ADEF是菱形,
∴DE∥AF.
∴∠BDE=∠A.
∵∠ABC=∠DBE.
∴△BDE∽△BAC.
∴,
设菱形ADEF的边长为x,则有,
解之得,x=.
∴菱形边长为.
∵四边形ADEF是菱形.
∴AC∥DE.
∴∠BGE=∠BFC.
∵∠GBE=∠FBC.
∴△BGE∽△BFC.

同理可得:,

∴,
∴EG=,
以上问题属网友观点,不代表本站立场,仅供参考!