如图,已知直线l1:与直线?l2:y=-2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,

发布时间:2020-08-07 18:26:17

如图,已知直线l1:与直线?l2:y=-2x+16相交于点C,直线l1、l2分别交x轴于A、B两点,矩形DEFG的顶点D、E分别在l1、l2上,顶点F、G都在x轴上,且点G与B点重合,那么S矩形DEFG:S△ABC=________.

网友回答

8:9
解析分析:把y=0代入l1解析式求出x的值便可求出点A的坐标.令x=0代入l2的解析式求出点B的坐标.然后可求出AB的长.联立方程组可求出交点C的坐标,继而求出三角形ABC的面积,再利用xD=xB=8易求D点坐标.又已知yE=yD=8可求出E点坐标.故可求出DE,EF的长,即可得出矩形面积.

解答:由 x+=0,得x=-4.
∴A点坐标为(-4,0),
由-2x+16=0,得x=8.
∴B点坐标为(8,0),
∴AB=8-(-4)=12.
由 ,解得 ,
∴C点的坐标为(5,6),
∴S△ABC=AB?C=×12×6=36.
∵点D在l1上且xD=xB=8,
∴yD=×8+=8,
∴D点坐标为(8,8),
又∵点E在l2上且yE=yD=8,
∴-2xE+16=8,
∴xE=4,
∴E点坐标为(4,8),
∴DE=8-4=4,EF=8.
∴矩形面积为:4×8=32,
∴S矩形DEFG:S△ABC=32:36=8:9.
以上问题属网友观点,不代表本站立场,仅供参考!