两个全等的Rt△ABC和Rt△EDA如图放置,点B、A、D在同一条直线上.
操作:在图中,作∠ABC的平分线BF,过点D作DF⊥BF,垂足为F,连接CE.证明BF⊥CE.
探究:线段BF、CE的关系,并证明你的结论.
说明:如果你无法证明探究所得的结论,可以将“两个全等的Rt△ABC和Rt△EDA”改为“两个全等的等腰直角△ABC和等腰直角△EDA(点C、A、E在同一条直线上)”,其他条件不变,完成你的证明,此证明过程最多得2分.
网友回答
证明:2BF=CE,且BF⊥CE.
过点E作EG⊥CB的延长线于点G.可得BDEG是矩形,即BD=EG,BG=DE,
设BC=AD=m,AB=DE=n.
∵BF是∠ABC的平分线,
∴∠DBF=45°,
又∵DF⊥BF,
∴∠FDB=45°,
∴△BFD是等腰直角三角形,
∴BF2+DF2=BD2,BF2+BF2=(AB+AD)2=(m+n)2,
∴BF=(m+n).
又∵△CGE也是直角三角形,
∴CE2=CG2+GE2
=(CB+BG)2+BD2
=(CB+DE)2+(AB+AD)2
=(m+n)2+(m+n)2
=2(m+n)2
∴CE=(m+n).
由此可得,2BF=CE;
∵∠GCE=∠CBF=45°,
∴CE⊥BF.
解析分析:过点E作EG⊥CB的延长线于点G.可得△BFD和△CGE是等腰直角三角形,可得BF=(AB+AD),CE=(AB+AD),由此可得,2BF=CE.
点评:此题考查了角平分线的定义和直角三角形的性质,作辅助线是关键.此题比较难.