有四张背面相同的纸牌A,B,C,D,其正面分别画有四个不同的几何图形(如图);
(1)将这4张纸牌背面朝上洗匀后摸出一张,摸到正面是中心对称图形的纸牌的概率是______.
(2)将这4张纸牌背面朝上洗匀后摸出两张,用树状图(或列表法)求摸到正面都是中心对称图形的纸牌的概率(纸牌可用A,B,C,D表示);
(3)放入n张和以上背面相同的空白纸牌后,从中摸出两张,摸到正面都是中心对称图形的纸牌的概率为,则n=______.
网友回答
解:(1)共有4张牌,正面是中心对称图形的情况有2种,所以摸到正面是中心对称图形的纸牌的概率是;
(2)将这4张纸牌背面朝上洗匀后摸出两张,出现的情况如下
共有12种等可能的结果,摸到正面都是中心对称图形的纸牌的可能有2种,
概率为;
(3)摸到正面都是中心对称图形的纸牌的概率为,则共有72种等可能的结果,所以共有9张牌.9-4=5,要放入5张牌.
解析分析:根据概率的求法,找准两点:
①全部情况的总数;
②符合条件的情况数目;二者的比值就是其发生的概率.
使用树状图分析时,一定要做到不重不漏.
点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.