若函数f(x)=ax+1-2a在[-1,1]上存在x0,使f(x0)=0(x0≠±1),则a的取值范围是________.

发布时间:2020-08-07 23:19:30

若函数f(x)=ax+1-2a在[-1,1]上存在x0,使f(x0)=0(x0≠±1),则a的取值范围是________.

网友回答

(,1)
解析分析:由函数零点的判定定理可得f(-1)f(1)<0,即 (1-3a)(1-a)<0,解一元二次不等式求得a的取值范围.

解答:由函数零点的判定定理可得f(-1)f(1)<0,即 (1-3a)(1-a)<0,解得 <a<1,故a的取值范围是(,1),
以上问题属网友观点,不代表本站立场,仅供参考!