如图所示,把一个直角三角尺ABC绕着60°角的顶点B顺时针旋转,使得点C与AB的延长线上的点D重合,已知BC=8.(1)三角尺旋转了多少度?连结CD,试判断△BCD的

发布时间:2020-08-09 14:28:30

如图所示,把一个直角三角尺ABC绕着60°角的顶点B顺时针旋转,使得点C与AB的延长线上的点D重合,已知BC=8.
(1)三角尺旋转了多少度?连结CD,试判断△BCD的形状;
(2)求AD的长;
(3)边结CE,试猜想线段AC与CE的大小关系,并证明你的结论.

网友回答

解:(1)∵∠EBD=∠ABC=60°,
∴∠ABE=120°,
∴三角尺旋转了120度;
∵BC=BD,
∴△BCD为等腰三角形;

(2)在Rt△ABC,∠A=30°,BC=8,
∴AB=2BC=16,
∴AD=AB+BD=16+8=24;

(3)AC=CE.理由如下:连结CE,如图,
∵∠EBD=∠ABC=60°,
∴∠EBC=60°,
∴∠ABC=∠EBC,
在△ABC和△EBC中

∴△ABC≌△EBC(SAS),
∴AC=CE.
解析分析:(1)根据题意得∠EBD=∠ABC=60°则∠ABE=120°,所以三角尺旋转了120度;根据旋转的性质得BC=BD,可判断△BCD为等腰三角形;
(2)含30度三角形三边的关系由∠A=30°,BC=8得到AB=2BC=16,则AD=AB+BD=24;
(3)由∠EBD=∠ABC=60°得到∠EBC=60°,根据“SAS”可判断△ABC≌△EBC,所以AC=CE.

点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了含30度三角形三边的关系和三角形全等的判定与性质.
以上问题属网友观点,不代表本站立场,仅供参考!