如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=3,将BC向BA方向折过去,使点C落在BA上的C′点,折痕为BE,则C′E的长为________.

发布时间:2020-08-08 10:24:42

如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=3,将BC向BA方向折过去,使点C落在BA上的C′点,折痕为BE,则C′E的长为________.

网友回答


解析分析:根据翻转变换的性质,可得出∠BC'E=∠C=60°,继而求出∠AEC'=30°,∴△AC'E为等腰三角形,求C'E的长即是求AC'的长.

解答:在Rt△ABC中∠ABC=90°,∠A=30°,
∴∠C=60°,
∵AC=3,
∴BC=,AB=
∵△C'EB有△CBE翻折得到,
∴BC=CB',
∴∠BC'E=∠C=60°,
∵∠BC'E=∠A+∠AEC',
∴60°=30°+∠AEC',
∴∠AEC'=30°
∴AC'=C'E
∴C'E=AC'=AB-BC'==.
以上问题属网友观点,不代表本站立场,仅供参考!