已知:如图,△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB边的垂直平分线EF交BD于点E,连AE(1)比较∠AED与∠ABC的大小关系,并证明你的结论(

发布时间:2020-08-08 01:09:21

已知:如图,△ABC中,∠C=90°,BD平分∠ABC交AC于点D,AB边的垂直平分线EF交BD于点E,连AE
(1)比较∠AED与∠ABC的大小关系,并证明你的结论
(2)若△ADE是等腰三角形,求∠CAB的度数.

网友回答

解:(1)∠AED=∠ABC.
证明:∵EF垂直平分AB,
∴EA=EB,
∴∠EAB=∠EBA,
∴∠DEA=∠EBA+∠EAB=2∠EBA,
∵BD平分∠ABC,
∴∠ABC=2∠EBA,
∴∠DEA=∠ABC;

(2)∵△ADE是等腰三角形,
∴∠EAD=∠DEA,
∵∠DEA=∠ABC,
设∠DBC=x°,
∴∠ABD=∠DBC=∠BAE=x°,
∴∠ABC=2x°;
∴∠CAB=∠BAE+∠DAE=3x°,
∵∠ABC+∠CAB=90°,
∴2x+3x=90,
解得:x=18,
∴∠CAB=3x°=54°.
解析分析:(1)由AB边的垂直平分线EF交BD于点E,根据线段垂直平分线的性质,可得EA=EB,即可证得∠EAB=∠EBA,则可得∠AED=2∠EBA,又由BD平分∠ABC交AC于点D,则可得∠ABC=2∠EBA,则可证得∠AED=∠ABC;
(2)设∠DBC=x°,由△ADE是等腰三角形,可求得∠EAD=∠AED=∠ABC=2x°,∠BAE=∠ABE=∠CBD=x°,则可得方程2x+3x=90,继而求得
以上问题属网友观点,不代表本站立场,仅供参考!