已知函数f(x)=x2+bx(b∈R),,(Ⅰ)?当a=b=1时,求H(x);(Ⅱ)?当a=1时,在x∈[2,+∞)上H(x)=f(g(x)),求b的取值范围;(Ⅲ)

发布时间:2020-08-10 03:10:12

已知函数f(x)=x2+bx(b∈R),,
(Ⅰ)?当a=b=1时,求H(x);
(Ⅱ)?当a=1时,在x∈[2,+∞)上H(x)=f(g(x)),求b的取值范围;
(Ⅲ)?当a>0时,方程f(g(x))+c=0,在(0,+∞)上有且只有一个实根,求证:b、c中至少有一个负数.

网友回答

解:(I)当a=b=1时,f(x)=x2+x,
由f(x)≥g(x)可得,x≥1或x<0;由f(x)<g(x)可得0<x≤1
∵=
g[f(x)]=g(x2+x)=

(II)当a=1时,x∈[2,+∞),H(x)=f[g(x)]可得当x≥2时,f(x)≥g(x)恒成立
即在[2,+∞)恒成立
∴在x∈[2,+∞)恒成立
令h(x)=,则容易得函数h(x)在[2,+∞)单调递减,则h(x)max=h(2)=

(III)假设b≥0,c≥0,a>0
由于在(0,]单调递减,在单调递增
∴>0
∵c++c在[2,+∞)单调递增
∴c++c=在(0,+∞)恒成立与f[g(x)]+c=0有根矛盾
故假设错误即b,c至少有一个为非负数
解析分析:(I)当a=b=1时,f(x)=x2+x,由f(x)≥g(x)可得,x≥1或x<0;由f(x)<g(x)可得0<x≤1,代入可求
(II)当a=1时,x∈[2,+∞),H(x)=f[g(x)]可得当x≥2时,f(x)≥g(x)恒成立,即在x∈[2,+∞)恒成立,令h(x)=,则容易得函数h(x)在[2,+∞)单调递减,则b≥h(x)max可求
(III)利用反证法进行证明

点评:本题主要考查了函数解析式的求解,分段函数的应用,及理由函数的单调性求解函数的最值,还要注意函数的恒成立问题与最值之间的相互转化
以上问题属网友观点,不代表本站立场,仅供参考!