如图,求∠A+∠B+∠C+∠D+∠E+∠F的度数和.
网友回答
解:∵∠APC是△AEP的外角,
∴∠APC=∠A+∠E,
∵∠BOD是△DOF的外角,
∴∠BOD=∠D+∠F,
∴∠A+∠B+∠C+∠D+∠E+∠F=∠B+∠C+∠APC+∠BOD=180°×(4-2)=360°.
解析分析:由三角形外角性质得,∠APC=∠A+∠E,∠BOD=∠D+∠F,从而求∠A+∠B+∠C+∠D+∠E+∠F的度数和,变为∠B+∠C+∠APC+∠BOD的度数和,因∠B、∠C、∠APD、∠BOD是四边形BCPO的四个内角,利用多边形的内角和定理(180°(n-2))即可求出它们的和.
点评:本题考查多边形的内角和定理,三角形的外角性质.