图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=A.B.C.D.

发布时间:2020-07-29 13:24:46

图,在矩形ABCD中,AB=3,BC=2,以BC为直径在矩形内作半圆,自点A作半圆的切线AE,则sin∠CBE=A.B.C.D.

网友回答

D

解析分析:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F,则易证AO⊥BE,△BOF∽△AOB,则sin∠CBE=,求得OF的长即可求解.

解答:解:取BC的中点O,则O为圆心,连接OE,AO,AO与BE的交点是F∵AB,AE都为圆的切线∴AE=AB∵OB=OE,AO=AO∴△ABO≌△AEO(SSS)∴∠OAB=∠OAE∴AO⊥BE在直角△AOB里AO2=OB2+AB2∵OB=1,AB=3∴AO=易证明△BOF∽△AOB∴BO:AO=OF:OB∴1:=OF:1∴OF=sin∠CBE==故选D.

点评:本题主要考查了切线长定理,以及三角形的相似,求角的三角函数值的问题转化为求线段的比的问题.
以上问题属网友观点,不代表本站立场,仅供参考!