已知∠AOB=30°,半径为6cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧的长;(2)⊙P

发布时间:2020-08-08 14:12:10

已知∠AOB=30°,半径为6cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.

(1)⊙P移动到与边OB相切时(如图),切点为D,求劣弧的长;
(2)⊙P移动到与边OB相交于点E,F,若EF=4cm,求OC的长.

网友回答

解:(1)如图1,连接PD、PC.
∵∠AOB=30°,半径为6cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C.
∴∠DPC=150°,
∴劣弧的长为:=5πcm;

(2)可分两种情况,
①如图2,当P在∠AOB内部,连接PE,PC,过点P做PM⊥EF于点M,延长CP交OB于点N,
∵EF=4cm,
∴EM=2cm,
在Rt△EPM中,PM===2cm,
∵∠AOB=30°,
∴∠PNM=60°,
∴PN=PM=3cm,
∴NC=PN+PC=9cm,
在Rt△OCN中,OC=NC×cot30°=9cm.
②如图3,当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,
由①可知,PN=3cm,
∴NC=PC-PN=3cm,
在Rt△OCN中,OC=OC=NC×cot30°=3cm.
综上所述,OC的长为9cm或3cm.
解析分析:(1)根据∠AOB=30°,半径为3cm的⊙P沿边OA从右向左平行移动,与边OA相切的切点记为点C,利用弧长公式得出弧的长;
(2)分两种情况分析,①当P在∠AOB内部,根据⊙P移动到与边OB相交于点E,F,利用垂径定理得出EF=4cm,得出EM=2cm,进而得出OC的长.
②当P在∠AOB外部,连接PF,PC,PC交EF于点N,过点P作PM⊥EF于点M,进而求出即可.

点评:此题主要考查了直线与圆的位置关系以及垂径定理和弧长计算公的应用.解答(2)题时,对于动点问题,要分类讨论,以防漏解.
以上问题属网友观点,不代表本站立场,仅供参考!