若关于x的一元二次方程a(x+m)2=3两个实根为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点橫坐标分别是A.x1=-1,x2=3B.x1=-3,x2=1C.x1=1,x2=5D.不能确定
网友回答
C
解析分析:利用待定系数法求得m、a的值,然后将其代入抛物线y=a(x+m-2)2-3.令y=0,则(x-3)2-3=0,据此可以求得抛物线y=a(x+m-2)2-3与x轴的交点的横坐标.
解答:∵关于x的一元二次方程3的两个实数根x1=-1,x2=3,
∴,
解得,,
则抛物线y=a(x+m-2)2-3=(x-3)2-3,
令y=0,则(x-3)2-3=0,
解得,x=5或x=1,
∴抛物线y=a(x+m-2)2-3与x轴的交点坐标是(5,0)和(1,0).即抛物线与x轴交点的横坐标分别是5,1.
故选C.
点评:本题考查了抛物线与x轴的交点.解答该题时,也可以利用抛物线图象的平移来填空.