如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于A.B.C.D.

发布时间:2020-07-30 08:33:39

如图,已知⊙O的半径为5,锐角△ABC内接于⊙O,BD⊥AC于点D,AB=8,则tan∠CBD的值等于A.B.C.D.

网友回答

D

解析分析:过B作⊙O的直径BM,连接AM;由圆周角定理可得:①∠C=∠AMB,②∠MAB=∠CDB=90°;由上述两个条件可知:∠CBD和∠MBA同为等角的余角,所以这两角相等,求出∠MBA的正切值即可;过A作AB的垂线,设垂足为E,由垂径定理易求得BE的长,即可根据勾股定理求得OE的长,已知∠MBA的对边和邻边,即可求得其正切值,由此得解.

解答:解:过B作⊙O的直径BM,连接AM;则有:∠MAB=∠CDB=90°,∠M=∠C;∴∠MBA=∠CBD;过O作OE⊥AB于E;Rt△OEB中,BE=AB=4,OB=5;由勾股定理,得:OE=3;∴tan∠MBA==;因此tan∠CBD=tan∠MBA=,故选D.

点评:此题主要考查了圆周角定理、垂径定理、勾股定理的综合应用能力;能够将已知和所求的条件构建到同一个直角三角形中,是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!