已知:如图,在△ABC中,∠A、∠B、∠C所对的边分别为a、b、c.点E是AC边上的一个动点(点E与点A、C不重合),点F是AB边上的一个动点(点F与点A、B不重合),连接EF.
(1)当a、b满足a2+b2-16a-12b+100=0,且c是不等式组的最大整数解时,试说明△ABC的形状;
(2)在(1)的条件得到满足的△ABC中,若EF平分△ABC的周长,设AE=x,y表示△AEF的面积,试写出y关于x的函数关系式.
网友回答
解:(1)∵a2+b2-16a-12b+100=0,
∴(a-8)2+(b-6)2=0,
∴a-8=0,b-6=0,
∴a=8,b=6.
∵,
解得-4≤x<11,
∵c是不等式组的最大整数解,
∴c=10.
∵82+62=102,即a2+b2=c2,
∴△ABC是直角三角形;
(2)如图,过点F作FD⊥AC于D.
∵EF平分△ABC的周长,
∴AE+AF=(a+b+c)=12,
∵AE=x,
∴AF=12-x(2<x<6).
∵sinA==0.8,
∴DF=sinA?AF=0.8(12-x).
∴△AEF的面积=×AE×DF=x?0.8(12-x)=-0.4x2+4.8x(2<x<6).
解析分析:(1)利用配方法把a2+b2-16a-12b+100=0整理为完全平方形式,根据非负数的性质得到a、b的值;再解不等式组求出c的值,进而判断三角形的形状;
(2)先由EF平分△ABC的周长,得到AE+AF的和为12,再利用三角函数求出AE边上的高DF=0.8(12-x),然后根据三角形的面积公式得到△AEF的面积,进而求出y关于x的函数关系式.
点评:本题主要考查了配方法,非负数的性质,勾股定理的逆定理,一元一次不等式组的整数解,三角形的周长与面积,涉及的知识点较多,难度中等,注意利用三角函数求出所需线段的长度是解题的关键.