如图,矩形ABCD中,AB=12,AD=10,将此矩形折叠,使点B落在AD边上的中点E处,则折痕FG=________.

发布时间:2020-08-06 03:14:57

如图,矩形ABCD中,AB=12,AD=10,将此矩形折叠,使点B落在AD边上的中点E处,则折痕FG=________.

网友回答


解析分析:通过作辅助线,把所求线段FG转化到直角三角形中,使用勾股定理,根据折叠的性质:对应线段相等,连接EF,EG,GB,再运用勾股定理求出相关线段的长度.

解答:解:作GH⊥AB,垂足为点H,连接EF,EG,GB,
由折叠的性质可知,FB=EF(设为x),EG=GB,
则AF=12-x,
由点B落在AD边上的中点E处,可知AE=AD=5,
在Rt△AEF中,由勾股定理得,
AE2+AF2=EF2,即52+(12-x)2=x2,解得x=,
设CG=y,则DG=12-y,在Rt△BCG和Rt△DEG中,
由BG=EG得,BC2+CG2=DG2+DE2,
即:102+y2=(12-y)2+52,解得y=,
∴FH=FB-BH=FB-CG=x-y=,
在Rt△FGH中,FG===.

点评:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应边相等.同时,要构成直角三角形,充分运用勾股定理解题.
以上问题属网友观点,不代表本站立场,仅供参考!