如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D在AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如果AD⊥ED,那么线段DE的长为A.1B.

发布时间:2020-08-05 12:13:44

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,点D在AC上,将△ADB沿直线BD翻折后,将点A落在点E处,如果AD⊥ED,那么线段DE的长为A.1B.C.D.

网友回答

D

解析分析:根据翻折变换的性质可得∠ABD=∠EBD,AD=DE,AB=BE,连接AE,可得△ADE是等腰直角三角形,然后求出∠DAE=45°,从而得到∠BAE,再根据等腰三角形两底角相等求出∠ABE,然后求出∠ABD,根据直角三角形两锐角互余求出∠ABC,再求出∠CBD=45°,得到△BCD是等腰直角三角形,根据等腰直角三角形的性质可得CD=BC,然后利用勾股定理列式求出AC,然后根据AD=AC-CD计算得到AD,即为DE的长.

解答:解:∵△ADB沿直线BD翻折后点A落在点E处,
∴∠ABD=∠EBD,AD=DE,AB=BE,
连接AE,∵AD⊥ED,
∴△ADE是等腰直角三角形,
∴∠DAE=45°,
∵∠BAC=30°,
∴∠BAE=30°+45°=75°,
在△ABE中,∠ABE=180°-2×75°=30°,
∴∠ABD=∠ABE=×30°=15°,
∵∠BAC=30°,
∴∠ABC=90°-30°=60°,
∴∠CBD=∠ABC-∠ABD=60°-15°=45°,
∴△BCD是等腰直角三角形,
∴CD=BC=1,
又∵BC=1,∠BAC=30°,
∴AB=2BC=2×1=2,
∴AC===,
∴AD=AC-CD=-1,
即DE=-1.
故选D.

点评:本题考查了翻折变换的性质,主要利用了翻折前后的图形能够完全重合,根据角的度数求出△BCD是等腰直角三角形是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!