如图,某地有一座圆弧形拱桥,桥下水面宽度AB为7.2m,拱高CD为2.4m.
(1)求拱桥的半径;
(2)现有一艘宽3m、船舱顶部为长方形并高出水面2m的货船要经过这里,问此货船能顺利通过拱桥吗?
网友回答
解:(1)如图,连接ON,OB.
∵OC⊥AB,
∴D为AB中点,
∵AB=7.2m,
∴BD=AB=3.6m.
又∵CD=2.4m,
设OB=OC=ON=r,则OD=(r-2.4)m.
在Rt△BOD中,根据勾股定理得:r2=(r-2.4)2+3.62,
解得r=3.9.
(2)∵CD=2.4m,船舱顶部为正方形并高出水面AB=2m,
∴CE=2.4-2=0.4(m),
∴OE=r-CE=3.9-0.4=3.5(m),
在Rt△OEN中,EN2=ON2-OE2=3.92-3.52=2.96(m2),
∴EN=(m).
∴MN=2EN=2×≈3.44m>3m.
∴此货船能顺利通过这座拱桥.
解析分析:(1)根据垂径定理和勾股定理求解;
(2)连接ON,OB,通过求距离水面2米高处即ED长为2时,桥有多宽即MN的长与货船顶部的3米做比较来判定货船能否通过(MN大于3则能通过,MN小于等于3则不能通过).先根据半弦,半径和弦心距构造直角三角形求出半径的长,再根据Rt△OEN中勾股定理求出EN的长,从而求得MN的长.
点评:此题考查了垂径定理的应用.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.