如图,AB是半圆O的直径,C、D、E三点在半圆上,H、K是直径AB上的点,若∠AHC=∠DHB,∠DKA=∠EKB,已知弧AC为30°,弧BE为70°,则∠HDK=A

发布时间:2020-07-30 06:10:09

如图,AB是半圆O的直径,C、D、E三点在半圆上,H、K是直径AB上的点,若∠AHC=∠DHB,∠DKA=∠EKB,已知弧AC为30°,弧BE为70°,则∠HDK=A.30°B.40°C.70°D.80°

网友回答

B
解析分析:如果将半圆O补全,得圆O.过点D作DF⊥AB于P,交⊙O于F,连接HF、FK.首先由垂径定理,可得DP=FP,则AB是DF的垂直平分线,由线段的垂直平分线的性质得出HD=HF,KD=KF,再由等腰三角形的性质可得∠HDF=∠HFD,∠KDF=∠KFD.然后根据平角的定义证明C、H、F三点共线,E、K、F三点共线.从而∠HDK=∠CFE,最后由圆周角定理求出∠HDK的度数.

解答:解:将半圆O补全,得圆O.过点D作DF⊥AB于P,交⊙O于F,连接HF、FK.∵DF⊥AB于P,AB是圆O的直径,∴DP=FP,∴AB是DF的垂直平分线,∴HD=HF,KD=KF,∴∠HDF=∠HFD,∠KDF=∠KFD.∵HD=HF,DP=FP,∴∠FHB=∠DHB,∵∠AHC=∠DHB,∴∠FHB=∠AHC,∴∠AHC+∠AHF=∠FHB+∠AHF=180°,∴C、H、F三点共线.同理,E、K、F三点共线.∴∠HDK=∠HDF+∠KDF=∠HFD+∠KFD=∠CFE,又∵弧AC为30°,弧BE为70°,∴弧CE为180°-30°-70°=80°,∴∠CFE=×80°=40°,∴∠HDK=40°.故选B.

点评:本题主要考查了垂径定理,线段垂直平分线、等腰三角形的性质,圆周角定理及三点共线的证明方法.综合性强,有一定难度.
以上问题属网友观点,不代表本站立场,仅供参考!