已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,A

发布时间:2020-08-12 05:37:35

已知:如图,在Rt△ABC中,∠ACB=90°,BC=3,tan∠BAC=,将∠ABC对折,使点C的对应点H恰好落在直线AB上,折痕交AC于点O,以点O为坐标原点,AC所在直线为x轴建立平面直角坐标系.
(1)求过A、B、O三点的抛物线解析式;
(2)若在线段AB上有一动点P,过P点作x轴的垂线,交抛物线于M,设PM的长度等于d,试探究d有无最大值?如果有,请求出最大值,如果没有,请说明理由.
(3)若在抛物线上有一点E,在对称轴上有一点F,且以O、A、E、F为顶点的四边形为平行四边形,试求出点E的坐标.

网友回答

解:(1)在Rt△ABC?中,
∵BC=3,tan∠BAC=,
∴AC=4.
∴AB=.
设OC=m,连接OH,如图,由对称性知,OH=OC=m,BH=BC=3,∠BHO=∠BCO=90°,
∴AH=AB-BH=2,OA=4-m.
∴在Rt△AOH?中,OH2+AH2=OA2,即m2+22=(4-m)2,得?m=.
∴OC=,OA=AC-OC=,
∴O(0,0)A(,0),B(-,3).
设过A、B、O三点的抛物线的解析式为:y=ax(x-).
把x=,y=3代入解析式,得a=.
∴y=x(x-)=.
即过A、B、O三点的抛物线的解析式为y=.

(2)设直线AB的解析式为y=kx+b,根据题意得:

解之得:,
∴直线AB的解析式为y=.
设动点P(t,),则M(t,).
∴d=()-()=-=
∴当t=时,d有最大值,最大值为2.

(3)设抛物线y=的顶点为D.
∵y==,
∴抛物线的对称轴x=,顶点D(,-).
根据抛物线的对称性,A、O两点关于对称轴对称.
①当AO为平行四边形的对角线时,抛物线的顶点D以及点D关于x轴对称的点F与A、O四点为顶点的四边形一定是平行四边形.
这时点D即为点E,所以E点坐标为().
②当AO为平行四边形的边时,由OA=,知抛物线存在点E的横坐标为或,即或,
分别把x=和x=代入二次函数解析式y=中,得点
E(,)或E(-,).
所以在抛物线上存在三个点:E1(,-),E2(,),E3(-,),使以O、A、E、F为顶点的四边形为平行四边形.
解析分析:(1)首先利用勾股定理求出AB的长,再利用在Rt△AOH?中,OH2+AH2=OA2,即m2+22=(4-m)2,求出m的值,进而得出O,A,B的坐标,再利用交点式求出抛物线解析式即可;
(2)首先求出AB解析式,表示出P,M坐标,进而得出关于PM的解析式,即可得出二次函数最值;
(3)①当AO为平行四边形的对角线时,抛物线的顶点D以及点D关于x轴对称的点F与A、O四点为顶点的四边形一定是平行四边形.
②当AO为平行四边形的边时,分别得出E点坐标即可.

点评:此题主要考查了二次函数的综合应用以及待定系数法求一次函数解析式和平行四边形的性质等知识,得出A,B点的坐标是解题关键.
以上问题属网友观点,不代表本站立场,仅供参考!