如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上(不与A、D重合),MN为折痕,折叠后B′C′与DN交于P,则四边形MNC′B′面积最小值为_____

发布时间:2020-08-07 07:03:50

如图,将一个边长为1的正方形纸片ABCD折叠,使点B落在边AD上(不与A、D重合),MN为折痕,折叠后B′C′与DN交于P,则四边形MNC′B′面积最小值为________.

网友回答


解析分析:先证明△MQB∽△B′AB,再利用相似三角形的性质得出C'N的长,再表示出求出梯形MNC′B′面积,进而求出最小值.

解答:如图,过N作NR⊥AB与R,
则RN=BC=1,
连BB′,交MN于Q.则由折叠知,
△MBQ与△MB′Q关于直线MN对称,即△MBQ≌△MB′Q,
有BQ=B′Q,MB=MB′,MQ⊥BB′.
∵∠A=∠MQB,∠ABQ=∠ABB′,
∴△MQB∽△B′AB,
∴==.
设AB′=x,则BB′=,BQ=,代入上式得:
BM=B'M=(1+x2).
∵∠MNR+∠BMQ=90°,∠ABB′+∠BMQ=90°,
∴∠MNR=∠ABB′,
在Rt△MRN和Rt△B′AB中,
∵,
∴Rt△MRN≌Rt△B′AB(ASA),
∴MR=AB′=x.
故C'N=CN=BR=MB-MR=(1+x2)-x=(x-1)2.
∴S梯形MNC′B′=[(x-1)2+(x2+1)]×1=(x2-x+1)=(x-)2+,
得当x=时,梯形面积最小,其最小值.
以上问题属网友观点,不代表本站立场,仅供参考!