矩形OABC在平面直角坐标系中的位置如图所示,AC两点的坐标分别为A(6,0),C(0,3),直线与BC边相交于点D.
(1)求点D的坐标;
(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;
(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.
网友回答
解:(1)∵四边形OABC为矩形,C(0,3)
∴BC∥OA,点D的纵坐标为3.
∵直线与BC边相交于点D,∴.
∴x=2,故点D的坐标为(2,3)
(2)∵若抛物线y=ax2+bx经过A(6,0)、D(2,3)两点,
∴
解得:∴抛物线的解析式为.
(3)∵抛物线的对称轴为x=3,
设对称轴x=3与x轴交于点P1,∴BA∥MP1,∴∠BAD=∠AMP1.
①∵∠AP1M=∠ABD=90°,∴△ABD∽△MP1A.
∴P1(3,0).
②当∠MAP2=∠ABD=90°时,△ABD∽△MAP2.
∴∠AP2M=∠ADB
∵AP1=AB,∠AP1P2=∠ABD=90°,
∴△AP1P2≌△ABD
∴P1P2=BD=4.
∵点P2在第四象限,∴P2(3,-4).
答:符合条件的点P有两个,P1(3,0)、P2(3,-4).
解析分析:(1)有题目所给信息可以知道,BC线上所有的点的纵坐标都是3,又有D在直线上,代入后求解可以得出