(1)如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心O在线段AC上,且与AB、BC都相切.请你用直

发布时间:2020-08-10 21:40:34

(1)如图,要在一块形状为直角三角形(∠C为直角)的铁皮上裁出一个半圆形的铁皮,需先在这块铁皮上画出一个半圆,使它的圆心O在线段AC上,且与AB、BC都相切.请你用直尺和圆规画出来(要求用尺规作图,保留作图痕迹,不要求写作法).
(2)若AC=3,BC=4,求上述半圆的直径.

网友回答

解:(1)作出角平分线得,作出半圆再得,小结,共.

(2)方法一:
解:设半⊙O切BA于点D;
∵AC=3,BC=4,
∴;
∵半⊙O切BA、BC于点D、C,
∴BD=BC=4,
∴AD=AB-BD=1;
又∵AB与⊙O相切于点D,
∴OD⊥AB,∴∠ADO=90°;
设半⊙O的半径为r,在Rt△ADO中,由勾股定理得AD2+OD2=OA2,
即12+r2=(3-r)2
解得,,
∴半⊙O的直径等于.
方法二:同一,证得∠ADO=90°,∵∠ACB=90°,
∴∠ADO=∠ACB,
∵∠A=∠A,
∴△ADO∽△ACB,
∴,
即,解得,
∴半⊙O的直径等于.
方法三:同一,证得∠ADO=90°,
∵,
∴AB?OD=AO?BC,
即5r=4(3-r),
解得,
∴半⊙O的直径等于.
解析分析:(1)由于⊙O与BC、AB都相切,即O到AB、BC的距离相等,因此点O必为∠ABC的角平分线与线段AC的交点,可据此进行作图.
(2)设⊙O与AB的切点为D,由勾股定理易求得AB的值,根据切线长定理知:BC=BD,即可求得AD的长,设出⊙O的半径,并表示出OA、OD的长,在Rt△OAD中,根据勾股定理即可求得⊙O的半径,进而可得⊙O的直径.(此题解法较多,只要能求出结果即可)

点评:此题考查了角平行的性质、切线的性质、切线长定理、勾股定理等知识的综合应用,难度适中.
以上问题属网友观点,不代表本站立场,仅供参考!