△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判断

发布时间:2020-07-29 22:22:42

△ABC的三边长分别为a,b,c,下列条件:①∠A=∠B-∠C;②∠A:∠B:∠C=3:4:5;③a2=(b+c)(b-c);④a:b:c=5:12:13,其中能判断△ABC是直角三角形的个数有A.1个B.2个C.3个D.4个

网友回答

C
解析分析:直角三角形的定义或勾股定理的逆定理是判定直角三角形的方法之一.

解答:解;①∠A=∠B-∠C,∠A+∠B+∠C=180°,解得∠B=90°,所以是直角三角形;②∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,解得∠A=45°,∠B=60°,∠C=75°,故不是直角三角形;③∵a2=(b+c)(b-c),∴a2+c2=b2,根据勾股定理的逆定理是直角三角形;④∵a:b:c=5:12:13,∴a2+b2=c2,根据勾股定理的逆定理是直角三角形.故选C.

点评:本题考查了利用直角三角形的定义和勾股定理的逆定理来判定一个三角形是不是直角三角形,是判定直角三角形的常见方法.
以上问题属网友观点,不代表本站立场,仅供参考!