在梯形ABCD中,AD∥BC,∠B=90°,AD=2cm,AB=8cm,E是AB上一点,连接DE、CE.若满足∠DEC=90°的点E有且只有一个,则BC=______

发布时间:2020-08-08 04:55:46

在梯形ABCD中,AD∥BC,∠B=90°,AD=2cm,AB=8cm,E是AB上一点,连接DE、CE.若满足∠DEC=90°的点E有且只有一个,则BC=________cm.

网友回答

8
解析分析:取CD中点F,连接EF,作DH⊥BC,垂足为H,根据三个角为直角的四边形为矩形得到四边形ABHD是矩形,利用矩形的对边相等得到AB=DH=8cm,AD=BH=2cm,若∠DEC=90°,则以D,E,C三点画圆,CD为直径,EF为半径,根据满足∠DEC=90°的点E有且只有一个,得到E就是圆的切点,利用切线的性质得到FE⊥AB,进而得到AD∥EF∥BC,利用平行线等分线段成比例得到E为AB中点,即EF为梯形的中位线,利用梯形中位线定理列出关系式,再利用直角三角形斜边上的中线等于斜边的一半列出关系式,得到CD=AD+BC,在直角三角形DHC中,利用勾股定理列出关于BC的方程,求出方程的解即可得到BC的长.

解答:解:取CD中点F,连接EF,作DH⊥BC,垂足为H,
根据题意得:四边形ABHD是矩形,AB=DH=8cm,AD=BH=2cm,
若∠DEC=90°,则以D,E,C三点画圆,CD为直径,EF为半径,
∵满足∠DEC=90°的点E有且只有一个,
∴E就是圆的切点,
∴FE⊥AB,
∴AD∥EF∥BC,
∴EF是梯形的中位线,EF=(AD+BC),
∵EF=CD,
∴CD=AD+BC,
∵在Rt△DHC中,根据勾股定理得:CH2+DH2=CD2=(AD+BC)2,
∴(BC-2)2+82=(BC+2)2,
整理得:8BC=64,
则BC=8cm.
以上问题属网友观点,不代表本站立场,仅供参考!