如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.
求证:(1)∠PBA=∠PCQ=30°;
(2)PA=PQ.
网友回答
证明:(1)∵四边形ABCD是矩形.
∴∠ABC=∠BCD=90°.
∵△PBC和△QCD是等边三角形.
∴∠PBC=∠PCB=∠QCD=60°.
∴∠PBA=∠ABC-∠PBC=30°,
∠PCD=∠BCD-∠PCB=30°.
∴∠PCQ=∠QCD-∠PCD=30°.
∴∠PBA=∠PCQ=30°.
(2)∵AB=DC=QC,∠PBA=∠PCQ,PB=PC.
∴△PAB≌△PQC.
∴PA=PQ.
解析分析:(1)∠根据矩形的性质及等边三角形的性质可证明得到∠PBA=∠PCQ=30°.
(2)由第一步求得∠PBA=∠PCQ.由等边三角形的性质及矩形的性质得到AB=CQ,PB=PC,利用SAS判定△PAB≌△PQC,从而得到PA=PQ.
点评:此题考查学生对矩形的性质,全等三角形的判定及等边三角形的性质等的综合运用.