某学习小组在探索“各内角都相等的圆内接多边形是否为正多边形”时,有如下探讨:
甲同学:我发现这种多边形不一定是正多边形.如圆内接矩形不一定是正方形.
乙同学:我知道,边数为3时,它是正三角形;我想,边数为5时,它可能也是正五边形…
丙同学:我发现边数为6时,它也不一定是正六边形.如图2,△ABC是正三角形,弧AD、弧BE、弧CF均相等,这样构造的六边形ADBECF不是正六边形.
(1)如图1,若圆内接五边形ABCDE的各内角均相等,则∠ABC=______,请简要说明圆内接五边形ABCDE为正五边形的理由.
(2)如图2,请证明丙同学构造的六边形各内角相等.
(3)根据以上探索过程,就问题“各内角都相等的圆内接多边形是否为正多边形”的结论与“边数n(n≥3,n为整数)”的关系,提出你的猜想(不需证明).
网友回答
解:(1)∵五边形的内角和=(5-2)×180°=540°,
∴∠ABC==108°,
理由:∵∠A=∠B=∠C=∠D=∠E,∠A对着,∠B对着,
∴=,
∴-=-,即=,
∴BC=AE.
同理可证其余各边都相等,
∴五边形ABCDE是正五边形;
(2)由图知∠AFC对,
∵=,而∠DAF对的=+=+=,
∴∠AFC=∠DAF.
同理可证,其余各角都等于∠AFC,
故图2中六边形各角相等;
(3)由(1)、(2)可知,当n(n≥3,n为整数)是奇数时,各内角都相等的圆内接多边形是正多边形;
当n(n≥3,n为整数)时偶数时,各内角都相等的圆内接多边形不一定为正多边形.
解析分析:(1)先根据多边形内角和定理求出正五边形的内角和,再求出各角的度数;根据同弧所对的圆周角相等,得出=,利用等式的性质,两边同时减去 即可得到=根据同弧所对的弦相等,得出DC=AE;
(2)由图知∠AFC对,由=,而∠DAF对的=+=+=,故可得出∠AFC=∠DAF.,同理可证,其余各角都等于∠AFC,由此即可得出结论;
(3)根据(1)、(2)的证明即可得出结论.
点评:本题考查的是正多边形形和圆,熟知弧、圆心角、弦的关系是解答此题的关键.