已知反比例函数y=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且0<x1<x2,设y1-y2=a,则A.a>0B.a<0C.a≥0D.a≤0

发布时间:2020-07-30 07:53:40

已知反比例函数y=(k<0)的图象上有两点A(x1,y1),B(x2,y2),且0<x1<x2,设y1-y2=a,则A.a>0B.a<0C.a≥0D.a≤0

网友回答

B
解析分析:先根据k<0判断出图象在第二,四象限,再根据0<x1<x2判断出点A、B都在第四象限,然后根据反比例函数的性质求出y1与y2的大小,再计算出a的大小即可.

解答:k<0,图象在第二,四象限,0<x1<x2,所以点A、B都在第四象限,并且y1<y2<0,所以y1-y2=a<0.故选B.

点评:本题考查了反比例函数的增减性,利用反比例函数的增减性比较大小时,一定要注意“在每一个象限内”比较大小.
以上问题属网友观点,不代表本站立场,仅供参考!