如图所示,倾角为θ的光滑斜面ABC放在水平面上,劲度系数分别为k1、k2的两个轻弹簧沿斜面悬挂着,两弹簧之间有一质量为m1的重物,最下端挂一质量为m2的重物,此时两重

发布时间:2020-08-05 03:24:36

如图所示,倾角为θ的光滑斜面ABC放在水平面上,劲度系数分别为k1、k2的两个轻弹簧沿斜面悬挂着,两弹簧之间有一质量为m1的重物,最下端挂一质量为m2的重物,此时两重物处于平衡状态,现把斜面ABC绕A点缓慢地顺时针旋转90°后,重新达到平衡.试求:m1、m2沿斜面各移动的距离.

网友回答

解:没旋转时,两弹簧均处于伸长状态,两弹簧伸长量分别为x1、x2,
由平衡条件可知k2x2=m2gsinθ,解得:x2=
k2x2+m1gsinθ=k1x1
解得:x1=
旋转后,两弹簧均处于压缩状态,压缩量为x1′,x2′
m2gcosθ=k2x2′
解得:x2′=
(m1+m2)gcosθ=k1x1′
解得:x1′=
所以m1移动的距离d1=x1+x1′=
m2移动的距离d2=x2+x2′+d=(sinθ+cosθ)+(sinθ+cosθ)
答:m1、m2沿斜面移动的距离各为和(sinθ+cosθ)+(sinθ+cosθ)
解析分析:在旋转前后,物体均处于平衡状态,则共点力的平衡条件可得出物体弹簧弹力,由胡克定律可求得弹簧的伸长量,则可得出旋转前后的距离.

点评:本题为共点力的平衡问题,受力分析较为简单,只要明确沿斜面方向平衡关系即可求解.
以上问题属网友观点,不代表本站立场,仅供参考!