如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.

发布时间:2020-08-10 10:50:20

如图,在Rt△ABC中,∠ACB=90°,AC=BC,D是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD的延长线于F.求证:△ACE≌△CBF.

网友回答

证明:∵AE⊥CD,
∴∠AEC=90°,
∴∠ACE+∠CAE=90°,(直角三角形两个锐角互余)
∵∠ACE+∠BCF=90°,
∴∠CAE=∠BCF,(等角的余角相等)
∵AE⊥CD,BF⊥CD,
∴∠AEC=∠BFC=90°,
在△ACE与△CBF中,∠CAE=∠BCF,∠AEC=∠BFC,AC=BC,
∴△ACE≌△CBF(AAS).
解析分析:根据等腰直角三角形的性质得出∠CAE=∠BCF,又因为AC=BC,AE⊥CD于E,BF⊥CD交CD的延长线于F即可得出结论.

点评:本题主要考查了等腰直角三角形的性质及全等三角形的判定,难度适中.
以上问题属网友观点,不代表本站立场,仅供参考!