如图,AP为圆O的切线,P为切点,OA交圆O于点B,若∠A=40°,则∠APB等于A.25°B.20°C.40°D.35°

发布时间:2020-07-29 16:21:42

如图,AP为圆O的切线,P为切点,OA交圆O于点B,若∠A=40°,则∠APB等于A.25°B.20°C.40°D.35°

网友回答

A

解析分析:如图,连接OP,由于AP为圆O的切线可以得到∠OPA=90°,由此可以求出∠O的度数;又由OB=OP可以求出∠OPB=∠OBP的度数,然后即可求出∠APB的度数.

解答:解:如图,连接OP,∵AP为圆O的切线,P为切点,∴∠OPA=90°,∴∠O=90°-∠A=50°,∵OB=OP,∴∠OPB=∠OBP=(180°-∠O)÷2=65°,∴∠APB=90°-∠OPB=25°.故选A.

点评:本题利用了切线的性质,直角三角形的性质,等边对等角,三角形内角和定理求解,综合性比较强.
以上问题属网友观点,不代表本站立场,仅供参考!