已知△ABC为等边三角形,D为AC的中点,∠EDF=120°,DE交线段AB于E,DF交直线BC于F.
(1)如图(1),求证:DE=DF;
(2)如图(2),若BE=3AE,求证:CF=BC.
(3)如图(3),若BE=AE,则CF=________BC;在图(1)中,若BE=4AE,则CF=________BC.
网友回答
证明:
(1)连接BD.
∵∠EDF=120°,∠B=60°,
∴BEFD四点共圆;
又∵D为AC中点,
∴在等边三角形ABC中,BD为∠ABC的角平分线,
∴DE和DF在BEFD四点所构成的圆内,其圆周角相等,
∴DE=DF;
(2)连接BD.
由(1)知,四边形BEFD是圆内接四边形,
又∵在等边三角形ABC中,BD为∠ABC的角平分线,
∴BD也是∠EDF的角平分线,
∴∠DEB=180°-=90°,
∴△BED是直角三角形;
同理,得△BFD是直角三角形;
在Rt△BED和Rt△BFD中,
BD=DB(公共边),DE=DF(由上题知),
∴Rt△BED≌Rt△BFD(HL),
∴BE=BF(对应边相等);
又∵AB=BC,BE=3AE
∴CF=BC;
(3)过点D作DH∥BC,交AB于点H.
∴∠CDH+∠BCA=180°,
∴∠CDH=120°;
又∵D为AC中点,
∴DH=BC=DC;
∵∠HDE+∠EDC=120°,∠FDC+∠EDC=120°,
∴∠HDE=∠FDC;
又由ED=FD,
∴△DHE≌△DCF(SAS);
∴HE=FC;
①∵BE=AE,AB=BC,
∴BE=BC,
∵AH=BC,
∴HE=BC-AH-BE=BC,
∴BC;
②∵BE=4AE,
∴AE=BC,
如图(1),连接BD.
在Rt△BED和Rt△BFD中,
,
则Rt△BED≌Rt△BFD,
∴BE=BF,
∴FC=BC-BF=AB-BE=AE=BC;
故