如图,P是等边△ABC内一点,且PA=6,PC=8,PB=10,若△APB绕点A逆时针旋转60°后,得到△AP′C,则∠APC=________°.

发布时间:2020-08-08 08:19:26

如图,P是等边△ABC内一点,且PA=6,PC=8,PB=10,若△APB绕点A逆时针旋转60°后,得到△AP′C,则∠APC=________°.

网友回答

150
解析分析:连接PP′,根据旋转变换的性质可得△AP′C和△APB全等,根据全等三角形对应边相等可得P′A=PA,P′C=PB,然后证明△APP′是等边三角形,根据等边三角形的每一个角都是60°可得∠APP′=60°,每一条边都相等可得PP′=PA,再根据勾股定理逆定理证明△P′PC是直角三角形,然后根据∠APC=∠APP′+∠P′PC代入数据进行计算即可得解.

解答:解:如图,连接PP′,
∵△APB绕点A逆时针旋转60°得到△AP′C,
∴△AP′C≌△APB,
∴P′A=PA=6,P′C=PB=10,
∵旋转角是60°,
∴△APP′是等边三角形,
∴∠APP′=60°,PP′=PA=6,
∵PP′2+PC2=62+82=100,P′C2=PB2=102=100,
∴PP′2+PC2=P′C2,
∴△P′PC是以∠P′PC为直角的直角三角形,
∴∠APC=∠APP′+∠P′PC=60°+90°=150°.
以上问题属网友观点,不代表本站立场,仅供参考!