如图,正方形ABCD的四个顶点分别在四条平行线l1,l2,l3,l4上,这四条平行线中相邻两条之间的

发布时间:2021-02-23 10:02:16

如图,正方形ABCD的四个顶点分别在四条平行线l1,l2,l3,l4上,这四条平行线中相邻两条之间的距离依次为h1,h2,h3,1)设正方形ABCD面积为S,求证,S=(h1+h2)2+h122)若3/2h1+h2=1,当h1变化时,说明正方形ABCD的面积S随h2r的变化情况.(h1=h3)

网友回答

(1)分别过左右两个顶点作平行线的垂线,则在正方形外围着四个全等的直角三角形,直角三角形的直角边长分别为h1和h2+h3其中(h1=h3),所以整个图形为一个大正方形面积为(h1+h2+h3)^2,所以s=(h1+h2+h3)^2-1/2(h2+h3)*h1*4,其中h3=h1,所以s=(h1+h2)^2+h1^2.
(2)因为0
======以下答案可供参考======
供参考答案1:
(1)用勾股定理也行
供参考答案2:
(1)证明:过A点作AF⊥l3分别交l2、l3于点E、F,过C点作CH⊥l2分别交l2、l3于点H、G,
∵四边形ABCD是正方形,l1∥l2∥l3∥l4,
∴AB=CD,∠ABE+∠HBC=90°,
∵CH⊥l2,
∴∠BCH+∠HBC=90°,
∴∠BCH=∠ABE,
∵∠BCH=∠CDG,
∴∠ABE=∠CDG,
∵∠AEB=∠CGD=90°,
∴△ABE≌△CDG(AAS),
∴AE=CG,
即h1=h3,
(2)证明:∵四边形ABCD是正方形,
∴AB=BC=CD=DA,
∵∠AEB=∠DFA=∠BHC=∠CGD=90°,∠ABE=∠FAD=∠BCH=∠CDG,
∴△AEB≌△DAF≌△BCH≌△CGD,且两直角边长分别为h1、h1+h2,
∴四边形EFGH是边长为h2的正方形,
∴S=4×1/2h1(h1+h2)+h22=2h12+2h1h2+h22=(h1+h 2)2+h12,
(3)由题意,得h2=1−3/2h1,
∴S=(h1+1−3/2h1)2+h12=5/4h12−h1+1
     
     
=5/4(h1−2/5)2+4/5 
又{h1>0       1−3/2h1>0}
 
解得0<h1<2/3
∴当0<h1<2/5时,S随h1的增大而减小;
当h1=2/5时,S取得最小值4/5;当2/5<h1<2/3时,S随h1的增大而增大.
供参考答案3:
如图,正方形ABCD的四个顶点分别在四条平行线l1,l2,l3,l4上,这四条平行线中相邻两条之间的距离依次为h1,x AB边和直线3所形成的锐角记为∠1
供参考答案4:
(1)设AD、BC与l2、l3相交于点E、F。
由题意知四边形BEDF是平行四边形,
∴△ABE≌△CDF(ASA)。
∴对应高h1=h3。(2)过B、D分别作l4的垂线,交l4于G、H(如图),易证△BCG≌△CDH,从而根据勾股定理,得CB2=BG2+GC2=BG2+HD2,即:S=(h3+h2)2+h32=(h1+h2)2+h12。(3)∵ 3 2h1+h2=1,∴h2=1- 3 2h1由(2)知S=(h1+h2)2+h12=( h1+1- 3 2h1)2 +h12= 。∵ h1>0,h2>0,h3>0,∴h2=1- 3 2h1>0,解得0<h1< 。∴当0<h1< 时,S随h1的增大而减小;当h1= 时,S取得最小值 ;当 <h1< 时,S随h1的增大而增大。【考点】平行的性质,勾股定理,全等三角形的判定和性质,等量代换,,二次函数的性质。【分析】(1)由全等三角形对应高相等的性质证明即可。(2)由△BCG≌△CDH,应用勾股定理即可证得。(3)将已知
以上问题属网友观点,不代表本站立场,仅供参考!