如图,等边三角形ABC的边长为3,点P为BC边上一点,且BP=1,点D为AC边上一点,若∠APD=60°,则CD的长为A.B.C.D.1
网友回答
B
解析分析:根据两角对应相等的两个三角形相似,即可证得ABP∽△PCD,然后根据相似三角形的对应边的比相等即可求得CD的长.
解答:∵∠APC=∠ABP+∠BAP=60+∠BAP=∠APD+∠CPD=60+∠CPD,∴∠BAP=∠CPD.又∵∠ABP=∠PCD=60,∴ABP∽△PCD.∴=,即=.∴CD=.故选B.
点评:本题主要考查了相似三角形的相似的判定以及应用,正确证得两个三角形相似是解题的关键.