如图,AD∥BC,∠A=90°,E是AB上一点,AD=BE,F是CD中点.
(1)Rt△ADE与Rt△BEC全等吗?如果是请说明理由;若不全等请添加一个合适条件使其全等并说明理由.
(2)若Rt△ADE与Rt△BEC全等,说明△CED是直角三角形.
网友回答
解:(1)不全等,添加EF⊥CD,
则Rt△ADE与Rt△BEC全等,
∵F是CD中点且EF⊥CD,
∴CE=DE,
∵AD∥BC,∠A=90°,
∴∠B=∠A=90°,
∵AD=BE,CE=DE,
∴Rt△ADE≌Rt△BEC;
(2)直角三角形,
∵Rt△ADE≌Rt△BEC,
∴∠AED=∠BCE,
∵∠BCE+∠BEC=90°,
∴∠AED+∠BEC=90°,
∴∠CED=180°-90°=90°,
∴△CED是直角三角形.
解析分析:(1)由AD∥BC,可得∠B=90°,又因为AD=BE,CE=DE,可得Rt△ADE≌Rt△BEC,
(2)是直角三角形,由Rt△ADE≌Rt△BEC得∠AED=∠BCE,从而得出∠AED+∠BEC=90°,则△CDE是直角三角形.
点评:本题主要考查了全等三角形的判定及性质问题,能够熟练掌握,难度适中.