如图,等边△ABC,G是△ABC的重心,直线AG把△ABC分成面积相等的两部分,但是不是过G点的任意一条直线都把△ABC分成面积相等的两部分?用实验或说理的方法,给予

发布时间:2020-08-09 14:40:52

如图,等边△ABC,G是△ABC的重心,直线AG把△ABC分成面积相等的两部分,但是不是过G点的任意一条直线都把△ABC分成面积相等的两部分?用实验或说理的方法,给予探索并得出结论.

网友回答

解:不是.
理由:如图,过G作直线EF∥AB,交AC于E、BC于F,
设直线AG与BC的交点为M,过M作MN∥EF,交AC于N.
∵G是△ABC的内心,
∴BM=MC,AG=2GM.
∵GE∥MN,
∴,即AE=AN.
∵BM=MC,即M是BC的中点,且MN∥EF∥AB,
∴MN是△ABC的中位线,即AN=NC.
∴AE=AN=NC.
设AE=2x,则AN=NC=3x,EN=x,
∴EC=NC+EN=4x,AC=AE+EC=6x.
∵EF∥AB,
∴△CMN∽△CBA,
∴=()2=,
故S△CEF:S四边形AEFB=4:5.
因此过G点的任意一条直线不是都能把△ABC分成面积相等的两部分.
解析分析:显然不是,可以过G作AB的平行线,分别交AC、BC于E、F,设直线AG与BC的交点为M,问题就变成了三角形CEF和四边形AEFB的面积关系;可过M作EF的平行线,交AC于N,通过构建相似三角形来得到AE、CE的比例关系,然后根据相似三角形△CEF和△CAB(因为EF∥AB)的相似比求出它们的面积比,从而得到△CEF和四边形AEFB的面积比是否为1:1.

点评:此题结合等边三角形的性质考查了三角形面积的求法、相似三角形的判定和性质以及三角形重心的相关知识;由于本题中所要求的是“过G点的任意一条直线”,因此可选用比较特殊的直线(例如:平行、垂直等)进行探索.
以上问题属网友观点,不代表本站立场,仅供参考!