设x1,x2是方程x2-2003x+2005=0的两个实根,实数a,b满足:ax12003+bx22003=2003,ax12004+bx22004=2004,则ax

发布时间:2020-07-30 13:06:46

设x1,x2是方程x2-2003x+2005=0的两个实根,实数a,b满足:ax12003+bx22003=2003,ax12004+bx22004=2004,则ax12005+bx22005的值为A.2005B.2003C.-2005D.-2003

网友回答

D
解析分析:由根与系数关系,x1,x2是方程x2-2003x+2005=0的两个实根可得:x1+x2=2003,x1×x2=2005;化简式子ax12005+bx22005的值为:(x1+x2)(ax12004+bx22004)-x1x2(ax12003+bx22003);将x1+x2=2003,x1×x2=2005,ax12003+bx22003=2003,ax12004+bx22004=2004代入即可得出结果.

解答:x1,x2是方程x2-2003x+2005=0的两个实根可得:x1+x2=2003,x1×x2=2005,故ax12005+bx22005=(x1+x2)(ax12004+bx22004)-x1x2(ax12003+bx22003),=2003×2004-2005×2003,=-2003.故选D.

点评:本题主要考查了根与系数的关系以及利用已知条件对所求式子的化简,难度中等,关键要掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=-p,x1x2=q.
以上问题属网友观点,不代表本站立场,仅供参考!