如图,AB是⊙O的直径,AB=4,过点B作⊙O的切线,C是切线上一点,且BC=2,P是线段OA中点,连接PC交⊙O于点D,过点P作PC的垂线,交切线BC于点E,交⊙O于点F,连接DF交AB于点G,则PE的长为________.
网友回答
解析分析:由AB是⊙O的直径,AB=4,BC=2,P是线段OA中点,CE是⊙O的切线,可求得BP与PC的长,易证得△PBC∽△EBP,然后由相似三角形的对应边成比例,求得PE的长.
解答:∵AB是⊙O的直径,AB=4,
∴OA=OB=AB=2,
∵P是线段OA中点,
∴OP=OA=1,
∴BP=OB+OP=3,
∵CE是⊙O的切线,
∴AB⊥CE,
∵BC=2,
在Rt△BCP中,BP==,
∵CP⊥EP,
∴∠BCP+∠BPE=90°,
∵∠E+∠BPE=90°,
∴∠BCP=∠E,
∵∠PBC=∠EBP=90°,
∴△PBC∽△EBP,
∴BC:BP=PC:PE,
∴PE==.
故