如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=________.
网友回答
3-
解析分析:设A点坐标为(0,a),利用两个函数解析式求出点B、C的坐标,然后求出AB的长度,再根据CD∥y轴,利用y1的解析式求出D点的坐标,然后利用y2求出点E的坐标,从而得到DE的长度,然后求出比值即可得解.
解答:设设A点坐标为(0,a),(a>0),
则x2=a,解得x=,
∴点B(,a),
=a,
则x=,
∴点C(,a),
∵CD∥y轴,
∴点D的横坐标与点C的横坐标相同,为,
∴y1=2=3a,
∴点D的坐标为(,3a),
∵DE∥AC,
∴点E的纵坐标为3a,
∴=3a,
∴x=3,
∴点E的坐标为(3,),
∴DE=3-,
==3-.
故